Journal of Organometallic Chemistry, 260 (1984) 235-254 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBERGANGSMETALL-METHYLEN-KOMPLEXE

XLVII *. ELEKTRONENSTOSS-INDUZIERTE ALKAN-ELIMINIERUNG BEI μ-METHYLEN-KOMPLEXEN VON COBALT UND RHODIUM

KLAUS K. MAYER*, ERICH FISCHER,

Naturwissenschaftliche Fakultät IV, Chemie und Pharmazie, Universität Regensburg, Universitätsstr. 31, D-8400 Regensburg I (Deutschland)

CHRISTINE BAUER und WOLFGANG A. HERRMANN*

Institut für Anorganische Chemie der Johann Wolfgang Goethe-Universität, Niederurseler Hang, D-6000 Frankfurt am Main (Deutschland)

(Eingegangen den 4. August 1983)

Summary

The electron impact decomposition pathways of typical μ -methylene complexes of the general composition (μ -CRR')[(η^5 -C₅Me₅)M(CO)]₂ (1-6, 8, 9; Me = CH₃; M = Co, Rh) and of the compound (μ -CH₂)[(η^5 -C₅H₄CH₃)Rh(CO)]₂ (7) have been elucidated by high resolution measurements, analysis of metastable transitions and ²H labelling. In striking contrast to the previously investigated analogous cyclopentadienyl derivatives, facile loss of the alkylidene bridge CRR', predominantly as saturated alkane H₂CRR', is a typical property of these particular dimetallacyclopropane-type molecules. As a rule, alkane elimination occurs after loss of the first carbon monoxide ligand. This process also dominates the thermolytic degradation sequence of compounds 1-6, 8, 9 and is in accord with double C₅(CH₃)₅-to-CRR' hydrogen transfer as shown by labelling experiments.

Zusammenfassung

Die elektronenstoss-induzierten Fragmentierungsrouten typischer μ -Methylen-Komplexe der allgemeinen Zusammensetzung (μ -CRR')[(η^5 -C₅Me₅)M(CO)]₂ (1-6, 8, 9; Me = CH₃; M = Co, Rh) und der Verbindung (μ -CH₂)[(η^5 -C₅H₄CH₃)Rh(CO)]₂ (7) wurden mithilfe hochauflösender Messungen, Analyse metastabiler Übergänge sowie ²H-Markierung untersucht. In auffälligem Gegensatz zu den früher untersuchten analogen Cyclopentadienyl-Derivaten ist hier der Verlust

^{*} XLVI. Mitteilung: Ref. 1.

der Alkyliden-Brücke CRR' vorwiegend als gesättigtes Alkan H_2 CRR' eine typische Eigenschaft dieser speziellen Dimetallacyclopropane. Die Alkan-Eliminierung kommt in der Regel erst nach dem Verlust der ersten Carbonyl-Gruppe zum Zuge. Dieser Spaltprozess dominiert auch den thermolytischen Abbau der Verbindungen 1–6, 8, 9 und wird im Einklang mit Markierungsexperimenten als zweifacher H-Transfer von den C₅Me₅-Gruppen auf die Carben-Brücke interpretiert.

Einleitung

In vorangegangenen Veröffentlichungen dieser Reihe haben wir über die Anwendungsbreite eines neuen und einfachen Syntheseprinzips für μ -Alkyliden-Komplexe berichtet und dabei die Verbindungen 1–9 beschrieben [1–12]. Anknüpfend an eine frühere Arbeit [13] wurden diese Komplexe auch massenspektrometrisch eingehend charakterisiert und einem Vergleich ihres elektronenstoss-induzierten Fragmentierungsverhalten mit jenem der analogen Cyclopentadienyl-Verbindungen zugeführt. Besonderes Interesse galt dabei dem Schicksal der brückengebundenen Alkyliden-Liganden, die sich auch thermisch abspalten lassen und dabei konstitutionsabhängig gesättigte Alkane sowie Kupplungs- und Isomerisierungsprodukte (Olefine) ergeben [14]. Bei der Auswahl der Schlüsselverbindungen haben wir uns auf die Komplexe 1a–1e, 2a–2l und 3–9 beschränkt; von den Cobalt-Derivaten 1a,1e sowie von den Rhodium-Verbindungen 2a, 2c, 2g (C₂H₅ statt CH₃) und 4b (Br statt Cl) sind die Kristall- und Molekülstrukturen bekannt [2,3,7–12,15].

Ergebnisse und Diskussion

Von den Verbindungen 1–9 wurden Elektronenstossmassenspektren (EI-MS) bei 70 und nom. 12 eV aufgenommen (Tab. 1). Alle beschriebenen Fragmentierungsschritte wurden an metastabilen Ionen im 1. und 2. feldfreien Raum (FFR) eines doppelfokussierenden Massenspektrometers umgekehrter Nier-Johnson-Geometrie untersucht. Die elementare Zusammensetzung der Ionen wurde, soweit es ihre Intensitäten erlaubten, mittels Hochauflösung bestimmt (70 eV; peak-matching).

Die Molekülionen aller untersuchten Komplexe verlieren schrittweise die metallgebundenen Carbonylgruppen und ähneln diesbezüglich den analogen Komplexen mit unsubstituierten C_5H_5 -Liganden [13] sowie Komplexen mit terminalen Carben-Liganden [16,17]. Die Festigung der Metall-CO-Bindungen nach Abspaltung der ersten CO-Einheit eröffnet den entsprechenden Cobalt- bzw. Rhodium-haltigen Fragment-Ionen mehrere konkurrierende Folgeschritte. Neben dem Verlust der zweiten CO-Gruppe erfolgen Abbaureaktionen, die empfindlich von der Natur der Alkyliden-Brücken abhängen; hierauf soll nachfolgend näher eingegangen werden.

I. Komplexe mit einer alkylsubstituierten Alkyliden-Brücke

Die Molekülionen (M^+) der μ -Methylen-Komplexe 1a und 2a verlieren im ersten Fragmentierungsschritt eine Carbonyl-Gruppe. Der Einbau kleiner Alkylreste in die Carben-Brücke zieht bei den Derivaten 2a,2e die Abspaltung des gesamten Kohlenwasserstoff-Fragments als Olefin (Propen, C₃H₆, bei 2d und 2e) nach sich (Fig. 1-5). Dieser Spaltprozess setzt teils schon bei den Molekülionen ein. Von den

2	8	Ь	c	d	e	•	9	h	i	k	I
R	н	D	н	н	Сн,	н	СО₂СН₃	сосн,	н	C.H.	C.H.
R'	н	D	сн,	C₃H₃	Сн,	CO₂C₂H₅	со,сн,	со ²С ¹Н °	CF,	C.H.	-(Cn

(M=Co)								
(M=Rh)								
1	a	ь	c	đ	•			
R	н	н	CO2C2H2	н	C∎H₂			
R'	н	CO2C2H2	CO2C3H2	CF3	С₅н₅			

Ło

5 6

Ĩ

ő

3 (M=Co,R=H)

4b(M=Rh,R=Cl)

1a,d(M=Co)2a-1(M=Rh)

SCHEMA 1

1e

co ćo

Fig. 1. Zerfallsschema des μ -Methylen-Komplexes 1a (M = Co).

Fig. 2. Zerfallsschema des μ -Methylen-Komplexes 2a (M = Rh). Die Zahlen in Klammern beziehen sich auf das Dideutero-Derivat 2b.

SCHEMA 2. Interpretationsvorschlag für die massenspektrometrische Methan-Abspaltung aus dem μ -Methylen-Komplex 2a.

Ionen $[M - CO]^+$ nehmen mehrere Konkurrenz-Reaktionen ihren Ausgang: Wie die Beispiele 1a und 2a,2b illustrieren (Fig. 1 bzw. 2), tritt Abspaltung des Bruchstücks der Summenformel CH₂O ein; diesem Schritt ist bei der Cobalt-Verbindung 1a der zweimalige Verlust von H₂ nachgeschaltet (m/z = 398 bzw. 396). Besonders interessant ist die Abspaltung von C₂H₄O (-CO, $-CH_4$) aus dem Ion $[M - CO]^+$ zu charakteristischen Schlüsselionen (1a: m/z = 386; 2a: m/z = 474) mit anschliessendem Verlust zweier H₂-Moleküle zu weiteren Schlüsselionen (1a: m/z = 382; 2a: m/z = 470). Die Abspaltung von C₂H₄O kann sowohl gekoppelt als auch zweistufig ablaufen; für letzteren Schritt spricht das Auftreten der Ionen [(C₅Me₅)₂M₂(CH₂)]⁺ (m/z = 402 bzw. 490). Auf dieser Stufe tritt eine weitere Reaktionsverzweigung ein: (a) Eliminierung von Methan, (b) Abspaltung von [MCH₂] zu den Ionen

TABELLE 1

AUSZUG AUS DEN EI-MASSENSPEKTREN DER VERBINDUNGEN 1–7 (m/z, 70/12 nom. eV; % rel. Int.) (¹³C-korrigiert)

- **1a**: $458(1/4)M^+$; 430(26/80); 400(4/-); 398(6/-); 396(14/-); 386(100/100); 384(5/-); 382(14/-); 380(15/-); 372(19/-); 329(17/-).
- **1b**: $530(0.5/0.5)M^+$; 502(32/100); 474(28/93); 430(9/23); 417(13/26); 387(30/29); 386(100/100); 372(26/24); 329(19/22).
- 1c: $602(0.5/0.5)M^+$; 574(53/100); 546(49/25); 502(1/5); 501(15/9); 474(100(82); 430(13/-); 417(22/-); 386(71/16); 372(22/-); 329(18/1).
- 1d: 526(1/1) M⁺; 498(7/16); 470(29/100); 426(100/89); 386(27/1); 329(40/11).
- 1e: $582(42/100)M^+$; 554(18/37); 420(20/7); 386(62/48); 359(100/26); 329(3/-).
- **2a**: $546(7/33)M^+$; 518(58/100); 503(4/3); 502(4/4); 490(1/3); 474(94/41); 470(100/3); 373(9/-).
- **2c**: $560(9/16)M^+$; 532(8/100); 504(16/37); 502(10/21); 474(36/53); 470(20/18); 373(100/15).
- **2d:** $574(10/100)M^+$; 546(8/67); 518(3/20); 517(5/14); 516(14/45); 504(11/80); 502(11/46); 474(42/25); 470(27/1); 373(100/2).
- **2e**: 574(8/56) *M*⁺; 546(14/100); 532(1/3); 518(3/14); 517(6/11); 516(15/41); 504(13/55); 502(12/38); 474(67/28); 470(40/1); 373(100/6).
- **2f**: $618(17/31)M^+$; 590(56/100); 562(26/72); 544(7/1); 518(33/10); 516(5/1); 503(8/-); 502(7/6); 490(2/-); 474(100/37); 472 (10/5); 470(54/13); 373(17/2).
- **2g**: 662(7/12) *M*⁺; 634(75/100); 606(48/41); 576(18/14); 575(10/-); 548(52/19); 544(6/2); 518(16/5); 503(11/1); 502(5/2); 474(39/6); 472(7/1); 470(32/2); 373(100/16).
- **2h**: 688(0.5/1)*M*⁺; 660(47/100); 632(45/86); 576(58/39); 532(20/14); 531(9/4); 503(16/-); 474(45/1); 470(46/-); 373(100/-).
- **2i**: $614(16/40)M^+$; 586(41/100); 558(100/92); 518(15/8); 514(63/1); 496(12/1); 474(25/0.5); 470(43/-); 373(4/-).
- **2k**: $698(-/-)M^+$; 670(44/100); 642(47/69); 504(9/-); 503(7/-); 502(23/0.5); 501(17/-); 474(100/72); 472(17/8); 470(57/10); 403(15/-); 373(13/-). M^+ : 698(FD).
- **21**: $699(-/-)M^{++}$; 671(66/100); 643(62/71); 504(8/-); 503(9/-); 502(25/1); 501(13/-); 474(100); 472(18/6); 470(76/13); 404(16/-); 373(18/-). M^{++} : 699(FD).
- 3: $508(0.5/0.5)M^+$; 480(35/66); 452(100/100); 386(85/21); 329(6/-); 328(19/0.5); 316(24/1); 259(80/15).
- **4a**: 596(7/19) *M*⁺; 568(36/98); 540(61/100); 538(12/9); 536(10/1); 474(53/37); 472(10/4); 470(31/6); 402(6/-); 401(7/-); 400(11/-); 373(14/0.5); 303(100/2).
- **4b**: $732(1) M^{+}({}^{35}Cl)$; 704(12); 676(13); $405(100)[C_{15}H_{17}{}^{35}Cl_{3}Rh]$; 373(9).
- 5: $608(1/1)M^+$; 580(50/100); 552(81/44); 418(8/-); 417(11/-); 416(18/-); 386(100/24); 359(24/1); 329(8/-).
- **6**: $696(-/-)M^+$; 668(43/100); 640(6/10); 502(13/1); 501(8/-); 474(100/56); 472(11/2); 470(55/2); 403(6/-); 373(3/-). M⁺: 696(FD).
- 7: $434(27/32)M^+$; 406(25/61); 391(3/1); 390(6/17); 378(2/11); 376(8/2); 362(100/100); 346(10/-); 261(45/6); 218(26/-).

Fig. 3. EI-Massenspektren der μ -Methylen-Komplexe 1a (oben; M = Co) und 2a (Mitte; M = Rh) sowie des μ -Dideuteromethylen-Komplexes 2b (unten; M = Rh).

 $[(C_5Me_5)_2M]^+$ (m/z = 329 bzw. 373). Einen Versuch zur mechanistischen Interpretation für die Methan-Abspaltung unternimmt Schema 2. Hiernach erfolgt zunächst ein Rh–C-Bindungsbruch unter Bildung einer radikalischen Rh–CH₂-Gruppierung, die nach H-Übertragung von einer Methylgruppe des Pentamethylcyclopentadienyl-Ringes als CH₃-Gruppe abgesättigt wird; dabei wandelt sich der substituierte, um ein H-Atom verarmte, wahrscheinlich immer noch π -gebundene Cyclopentadienylring in ein komplexiertes Fulven-System um. Für solche Umwandlungsreaktionen (MC₅Me₅ \rightarrow MC₅Me₄CH₂) gibt es präparative Beispiele [18–20]. Nach nochmaliger Übertragung eines Wasserstoffatoms von einer CH₃-Gruppe des noch intakten Pentamethylcyclopentadienyl-Ringes auf die metallgebundene CH₃-Gruppe erfolgt Methan-Abspaltung. Hiermit in Übereinstimmung ist bei **2a** ausgehend vom Ion $[M - CO]^+$ die Abspaltung eines 'CH₃-Radikals nachweisbar (m/z = 503).

Beim μ -Dideuteromethylen-Komplex **2b** erfolgt eine komplizierte Aufspaltung der Signale bei m/z = 502 und 503 bzw. m/z = 470-474 (vgl. Fig. 3). Dem Verlust von 'CH₃/CH₄ bzw. CO + CH₄ aus $[M - CO]^+$ muss also ein Austausch der D-Atome des μ -Methylen-Liganden mit den H-Atomen der C₅Me₅-Liganden vorausgehen. Das Auftreten intensiver Ionen bei m/z = 474, 475, 476 belegt die Eliminierung von CH₄, CH₃D und CH₂D₂ aus $[M - 2CO]^+$. Dieser Befund spricht für ein partielles scrambling der Ringmethyl- und μ -Methylen-Wasserstoffatome vor Eintritt der Fragmentierung. Für μ -Methylen-Komplexe des hier besprochenen Typs ist zumindest der säure-induzierte H/D-Austausch [21,22] realisierbar, der bei Hydrido(methylen)-Komplexen auch ohne Säurezusatz rasch zum Gleichgewicht führt [23].

Das Fragmentierungsverhalten von 2c ist dem des Grundkörpers 2a vergleichbar (Fig. 4). Vom Ion $[M - CO]^{++}$ ausgehend tritt Reaktionsverzweigung unter Abspaltung von CH₂O bzw. C₂H₆ und CO bzw. C₂H₄ ein. Aus $[M - 2CO]^{++}$ wird analog zum CH₄-Verlust Ethan eliminiert (vgl. Schema 1). Der Verlust eines Ethyl-Radikals ist hier nicht nachweisbar.

Auch die Spektren von 2d und 2e sind sehr ähnlich. In beiden Fällen verlieren die Molekülionen ein C_3H_6 -Fragment, sehr wahrscheinlich Propen; dieses Spaltprodukt dominiert auch bei der Thermolyse von 2d und 2e [14]. Auf der Stufe $[M - CO]^{+}$ beginnen mehrere Fragmentierungsfolgen (vgl. Fig. 5, 6): Abspaltung von C_3H_6 , C_3H_7 und C_3H_8 neben CH₂O- und CO-Verlust. $[M - 2CO]^{+}$ geht unter Propan-Abgabe zum Schlüsselion bei m/z = 474 über. Die Zerfallsschemata von 2d und 2e liefern abermals gute Argumente für eine stufenweise H-Übertragung aus den Methylgruppen der Cyclopentadienyl-Ringe auf die Alkyliden-Brücken.

Zur Stützung des in Schema 2 postulierten H-Übertragungsmechanismus wurde auch die Verbindung 7 untersucht, die jeweils nur eine Methyl-Gruppe an den Ringliganden trägt (Fig. 7). Auch hier ist die Freisetzung von CO und CH₄ aus dem Ion $[M - CO]^+$ unter Bildung des analogen Schlüsselions bei m/z = 362 (entspr. m/z = 474) zu beobachten, was auf Übertragung je eines H-Atoms aus den beiden CH₃-Gruppen zurückgeführt werden kann *. Von diesem Ion aus erfolgt die H₂-Abspaltung erwartungsgemäss in nur mehr untergeordnetem Masse. Für die in Schema

^{*} Solange das unsymmetrisch substituierte Derivat $(\eta^5-C_5Me_5)(CO)Rh-CH_2-Rh(CO)(\eta^5-C_5H_5)$ nicht zugänglich ist, bleibt ein schlüssiger Beweis des H-Transfermechanismus bei den symmetrischen $(\eta^5-C_5Me_5)_2$ -Komplexen aus. Beide auf die μ -Methylengruppen übertragenen H-Atome können grundsätzlich auch nur einem der C₅Me₅-Liganden entstammen.

2 beschriebene stufenweise Übertragung spricht die auch hier zu beobachtende Eliminierung eines Methyl-Radikals aus dem Ion $[M - CO]^+$.

II. Komplexe mit Cyclopentadienyliden-Liganden und aromatischen Ringen in der Methylen-Brücke

Die Zerfallsschemata der μ -Cyclopentadienyliden-Komplexe 3 (M = Co) und 4 (M = Rh) sind analog und sollen daher nur am Beispiel des Cobalt-Komplexes diskutiert werden (Fig. 8). Primär tritt hier der Verlust von zwei Carbonylgruppen aus dem Molekülion M^{++} auf, der entweder stufenweise oder gekoppelt ablaufen kann. Auf der Stufe $[M - 2CO]^{++}$ ist die Abspaltung eines $C_{10}H_{14}$ Co-Radikals zum Ion bei m/z = 259 [(C_5H_5)Co(C_5Me_5)⁺] und eines C_5H_4 Co-Radikals zu m/z = 329 [(C_5Me_5)₂Co⁺] zu beobachten. Besonders interessant ist der Verlust von Cyclopentadien (C_5H_6) zum Schlüsselion bei m/z = 386 und von Pentamethylcyclopentadien (C_5Me_5H) zu m/z = 316. Diese Fragmentierungen sprechen ebenfalls für eine H-Wanderung von einer CH₃-Gruppe der C_5Me_5 -Liganden zu den Brückenliganden mit anschliessender Isomerisierung (Schema 3).

SCHEMA 3. Deutungsvorschlag für den massenspektrometrischen Zerfall des μ -Cyclopentadienyliden-Komplexes 3.

m/z = 316

Bei allen anderen Dimetallacyclopropanen dieses Strukturtyps bleibt die C_5Me_5H -Abspaltung aus. Die synchrone Eliminierung dieses Teilchens sowie des C_5H_4 -Bausteins (als C_5H_6) lässt den Schluss zu, dass nach der ersten H-Übertragung ($C_5Me_5 + C_5H_4 \rightarrow C_5Me_4CH_2 + C_5H_5$) eine Zwischenstufe **B** durchlaufen wird, die einen π -gebundenen C_5H_5 -Baustein sowie eine Fulven-Brücke enthält. Letztere könnte nach zweimaliger H-Übertragung als C_5Me_5 H eliminiert werden (Schema 3). Präparative Beispiele des Verbindungstyps A mit π -gebundenen Aromaten-Brücken (z.B. C_5H_5 , C_6H_6) sind wohlbekannt [24].

Die μ -Fluorenyliden-Komplexe 5 (M = Co) und 6 (M = Rh) verhalten sich analog

(Fortsetzung s. S. 247)

Fig. 6. Zerfallsschema des μ -Propylid-2-en-Komplexes 2e (M = Rh).

Fig. 7. Zerfallsschema des μ -Methylen-Komplexes 7 (M = Rh).

Fig. 8. Zerfallsschema des Cyclopentadienyliden-Komplexes 3 (M = Co).

Fig. 9. Zerfallsschema des Fluorenyliden-Komplexes 5 (M = Co).

Fig. 10. Zerfallsschema des Diphenylmethylen-Komplexes 2k (M = Rh).

(Fig. 9). Nach Erreichen von $[M - 2CO]^+$ tritt Reaktionsverzweigung ein, wobei die Bruchstücke [M-Fluorenyliden], $[MC_5Me_4CH_2]$ und Fluoren eliminiert werden. Ein vergleichbares Fragmentierungsverhalten zeigen auch die Verbindungen 1e und 2k,2l (letztere sind streng analog). 1e eliminiert nach Verlust von CO und nach doppelter H-Übertragung Diphenylmethan; zusätzlich tritt, mit einer Umwandlung der Diphenylcarben-Brücke in einen Fluorenyliden-Liganden einhergehend, Verlust von $(C_5Me_5)CoH$ ein.

Die gleichen Fragmentierungen findet man bei den Rhodium-Komplexen 2k,2l

Fig. 11. Zerfallsschema der Verbindung 4b (M = Rh).

(Fig. 10). Zusätzlich erfolgt hier vom Ion $[M - CO]^+$ aus Abspaltung von Fluoren (m/z = 504) bzw. von Diphenylmethan (m/z = 502). Auch das μ -Tetrachlorcyclopentadienyliden-Derivat **4b** (M = Rh) lässt sich in dieses Fragmentierungsschema einordnen (Fig. 11): Beginnend bei $[M - 2CO]^+$ werden vier HCl-Moleküle abgespalten. Ferner tritt offensichtlich ein Cl/H-Austausch zwischen der Alkyliden-Brücke und den Methylgruppen der Ringe ein. Nach einer den unsubstituierten Cyclopentadienyliden-Komplexen analogen Umwandlung erfolgt sowohl die Abspaltung von C₅Cl₄Rh' ($\rightarrow m/z = 373$) als auch von C₁₀H₁₃ClRh' zu [(C₅Me₅)Rh-(C₅H₂Cl₃)]⁺.

III. Komplexe mit Alkoxycarbonyl-Gruppen in der Methylen-Brücke

Das Fragmentierungsverhalten dieser Verbindungen ist in den Grundzügen analog zu jenem der entsprechenden Cyclopentadienyl-Komplexe, die bereits früher eingehend diskutiert wurden [13]. Die Pentamethylcyclopentadienyl-Liganden sind Ursache zusätzlicher neuer Fragmentierungen (Fig. 12,13). Die Molekülionen der Essig- und Malonester-Derivate 2f bzw. 2g (M = Rh) verlieren zunächst CO und eröffnen auf der Stufe $[M - CO]^+$ eine Reihe weiterer Abspaltungsmöglichkeiten: (a) Verlust eines Radikals ['CHR₂] und der gesättigten Spezies CH₂R₂ nach Aufnahme von einem bzw. zwei H-Atomen; (b) die Eliminierung des zweiten CO-Liganden zu $[M - 2CO]^+$; (c) bei 2f die Abspaltung von Ethanol. Ausgehend von $[M - 2CO]^+$ tritt bei 2h ein übersichtlicher Zerfall zum Schlüsselion bei $m/z = 474 \operatorname{ein} (-C_4H_8, -CO_2, -(CH_3)_2C=O)$ wie auch Abspaltung des gesamten Liganden nach doppelter H-Übertragung. Bei 2f ist die Bildung des Schlüsselions komplexer (Verlust von $CH_4CO_2C_2H_5$ bzw. zweimal C_2H_4O) und kann auch schon von der Stufe $[M - CO)^+$ aus erfolgen. Jedenfalls ist ein vorhergehender doppelter H-Transfer von den CH₃-Gruppen der Ringe auf die Alkyliden-Brücke erforderlich (Fig. 12).

Der Komplex 2g zeigt ein den entsprechenden Cyclopentadienyl-Verbindungen

Fig. 12. Zerfallsschema des Rhodium-Komplexes 2f.

Fig. 13. Zerfallsschema des Rhodium-Komplexes 2g.

Fig. 14. Zerfallsschema des 2.2.2-Trifluorethylid-1-en-Komplexes 2i (M = Rh).

[13] analoges Abspaltungsmuster, das aber um die Eliminierung des Alkan-Derivats (Malonester) aus $[M - 2CO]^+$ und von CH₃CO₂CH₃ aus dem Ion bei m/z = 548 zu ergänzen ist.

IV. Komplexe mit CF₃-substituierten Methylen-Brücken

Die Verbindungen 1d (M = Co) und 2i (M = Rh) zeigen ein vergleichbares Fragmentierungsverhalten (Fig. 14). Das Molekülion erleidet zunächst die schrittweise Abspaltung von zwei CO-Gruppen. Die von $[M - 2CO]^+$ ausgehende, für μ -Alkyliden-Komplexe der C₅Me₅-Serie zu erwartende Alkan-Eliminierung nach H-Übertragung (hier: 1,1,1-Trifluorethan) tritt bei diesen Verbindungen hinter neuartigen, ligandspezifischen Eliminierungen zurück. Von besonderem Interesse ist dabei der vom Ion $[M - 2CO]^+$ ausgehende Verlust von C₂HF (Fluoracetylen). Ein Interpretationsversuch ist in Schema 4 niedergelegt. Im Gegensatz zu 1d tritt bei 2i auf der Stufe $[M - 2CO]^+$ eine dreimalige Abspaltung von HF mit nachgeschalteter H₂-Eliminierung zum Ion bei m/z = 496 auf. Über Konstitution oder gar Struktur der Fragmentionen lassen sich keine Angaben machen.

V. Komplexe mit alicyclischen Carben-Brücken (Dimetallaspirane)

Aus Vergleichsgründen haben wir von den Dicobalta- und Dirhodaspiranen 8

SCHEMA 4. Möglicher Verlauf der Fragmentierung des µ-(2,2,2-Trifluorethylid-1-en)-Komplexes 2i.

m / z	Rel. Int. (%)	Zusammensetzung/Zuordnung
526	1	$C_{28}H_{40}Co_2O_2/M^+$
498	2	$C_{27}H_{40}Co_2O/(M-CO)^{++}$
470	0.5	$C_{26}H_{40}Co_2/(M-2CO)^+$
466	0.5	$C_{26}H_{36}Co_2/(M-2CH_2O)^+$
444	27	$C_{22}H_{30}Co_2O_2/(M-C_6H_{10})^{++}$
416	4	$C_{21}H_{30}Co_2O$
414	2	$C_{21}H_{28}Co_2O$
390	1	$C_{20}H_{32}Co_2/(M-2CO-C_6H_8)^{+*}$
386	100	$C_{20}H_{28}Co_2/(M-2CO-C_6H_{12})^{+-}$
329	58	C ₂₀ H ₃₀ Co
82	35	C_6H_{10}
67	92	C ₅ H ₇
54	94	C ₄ H ₆
Metastabile Übergö	inge (1. und 2. FFR mit	linked-scan- $(B/E$ und B^2/E und DADI-Methoden)
<i>M</i> ^{+•}	m/z = 498	-CO
(m/z 526)	m/z = 444	$-C_{6}H_{10}$
$(M-2CO)^{+-}$	m/z = 390	$-C_6H_8$
(m/z 470)	m/z = 386	$-C_{6}H_{12}$
$(M - C_6 H_{10})^{+}$	m/z = 416	-CO
(m/z 444)	m/z = 414	-CH ₂ O
	m/z = 329	$-Co(CO)_2$

TABELLE 2 AUSZUG AUS DEN EI-MASSENSPEKTREN DES μ-CYCLOHEXANYLIDEN-KOMPLEXES 8 ^α

^a Messbedingungen: 70 eV, T_E 120°C, T_Q 150°C. Bei 9–12 eV wird m/z = 444 der Basis-Peak. Bei höheren Einlasstemperaturen steigen die Intensitäten der Signale bei m/z = 82, 67, 54 im Gegensatz zum entsprechenden Rhodium-Komplex 9 stark an. Somit ist letzterer durch höhere thermische Stabilität im Vergleich zum Cobalt-Analogon 8 ausgewiesen.

bzw. 9 die massenspektrometrischen Zerfallsschemata ermittelt, zumal unter den gasförmigen Thermolyseprodukten Cyclohexan, Cyclohexen, und Cyclohexa-1,3-dien gefunden worden waren [10a]. Der elektronenstossinduzierte Zerfall dieser beiden µ-Alkyliden-Komplexe schliesst sich erwartungsgemäss dem Fragmentierungsverhalten der Komplexe 2c-2e offenkettiger Alkyliden-Brücken an. Besonders hervorzuheben ist, dass der intakte carbocyclische C₆-Brückenligand in einstufiger Reaktion aus dem Molekülion abgespalten wird. Die entsprechenden Fragmentionen treten mit 27% (8: m/z = 444) bzw. 9% rel. Int. (9: m/z = 532) auf (70 eV); bei niedrigeren Anregungsenergien bilden sie jeweils das Signal höchster Intensität (Tab. 2 und 3). Der Zerfall $M^+ \rightarrow (M - C_6 H_{10})^+$ ist durch Analyse metastabiler Ionen belegt (E/B- und E/B²-linked scan; DADI) *. Interessant ist weiterhin die Abspaltung von C₆H₈ (Cyclohexadien) aus den Ionen $(M - 2CO)^+$ (8: m/z = 390; 9: m/z = 478), die bei der Rhodium-Verbindung in erheblich höherem Masse eintritt als beim Cobalt-Komplex. Ungeklärt bleibt, ob beim Verlust der C₆H₈-Einheit die beiden zurückbleibenden H-Atome an die Pentamethylcyclopentadienyl-Reste oder an die Rh-Atome wandern. Die bereits für die Komplexe 1-7 bekannte Besonderheit

^{*} Eine zusätzliche thermische C₆H₁₀-Freisetzung (Einlasssystem/Ionenquelle) ist möglich.

m / z	Rel. Int. (%)	Zusammensetzung/Zuordnung	
614	4	$C_{28}H_{40}Rh_2O_2/M^+$	
586	6	$C_{27}H_{40}Rh_2O/(M-CO)^{++}$	
558	7	$C_{26}H_{40}Rh_2/(M-2CO)^{++}$	
532	9	$C_{22}H_{30}Rh_2O_2/(M-C_6H_{10})^{+-}$	
504	2	$C_{31}H_{30}Rh_2O$	
502	5	$C_{21}H_{28}Rh_2O$	
478	31	$C_{20}H_{32}Rh_2/(M-2CO-C_6H_8)^{+*}$	
474	25	$C_{20}H_{28}Rh_2/(M-2CO-C_6H_{12})^{+}$	
470	22	$C_{20}H_{24}Rh_2$	
373	100	$C_{20}H_{30}Rh$	
82	18	C_6H_{10}	
67	41	C_5H_7	
54	45	C ₄ H ₆	
Metastabile Übergä	nge (1. und 2. FFR; B/	E- und B ² /E-linked-scan; DADI);	
M+•	m/z = 586	M - CO	
(<i>m / z</i> 614)	m/z = 532	$M - C_6 H_{10}$	
$(M - 2CO)^{+}$	m/z = 478	$M - C_6 H_8$	
(m/z 558)	m/z = 474	$M - C_6 H_{12}$	
$(M - C_6 H_{10})^{++}$	m/z = 504	M - CO	
(m/z 532)	m/z = 502	$M - CH_2O$	
	m/z = 373	$M - \operatorname{Rh}(\operatorname{CO})_2$	

AUSZUG AUS DEN EI-MASSENSPEKTREN DES #-CYCLOHEXANYLIDEN-KOMPLEXES 9 ª

^a Messbedingungen: 70 eV, T_E 120°C, T_Q 150°C. Bei 9–12 eV wird m/z = 532 der Basis-Peak. Bei höheren Einlasstemperaturen steigen die Intensitäten der Signale bei m/z = 82, 67, 54 nur geringfügig an.

der C₅Me₅-Liganden wird in der Abspaltung von C₆H₁₂ (Cyclohexan) aus den Ionen $(M - 2CO)^+$ deutlich.

Die Spaltprodukte, die sich aus der thermischen Belastung dieser Komplexe beim Schmelz- bzw. Zersetzungspunkt ergeben, wurden gaschromatographisch untersucht. Im Gegensatz zur Rhodium-Verbindung 9 bleibt beim Cobalt-Komplex 8 die Bildung von Cyclohexa-1,3-dien aus. Dies bestätigt das Ergebnis der Fragmentierung im Massenspektrum, wo die Cyclohexadien-Abspaltung bei der Rhodium-Verbindung in weit stärkerem Ausmass eintritt als beim Cobalt-Komplex. Hauptprodukt bei der thermischen Spaltung ist in beiden Fällen Cyclohexen (8: 95 Mol-%; 9: 98.7 Mol-%). Ein weiterer Unterschied zur Fragmentierung im Massenspektrum besteht darin, dass bei der Feststoff-Thermolyse in beiden Fällen Cyclohexan nicht gebildet wird [14].

Schlussfolgerung

Die hier untersuchten μ -Alkyliden-Komplexe erleiden ligandspezifische, auf ähnliche Systeme nicht ohne weiteres übertragbare Fragmentierungen, beschreiten aber auch gemeinsame Zerfallswege: Die Alkyliden-Brücken CRR' werden meist auf der Stufe der Ionen $[M - CO]^+$ als gesättigte Alkane H₂CRR' von den Metallatomen abgelöst; dieser typische Fragmentierungsschritt ist an die Anwesenheit

TABELLE 3

mindestens einer Methylgruppe an jedem C_5 -Ringliganden gebunden und erfolgt bei den Pentamethylcyclopentadienyl-Derivaten mit besonderer Leichtigkeit [28]. Umlagerungsfähige Alkyliden-Gruppen verlassen das Molekül bereits in Konkurrenz mit dem ersten CO-Liganden (z.B. Propylid-1-en/Propylid-2-en \rightarrow Propen; **2d,2e**). Diesbezüglich stimmen die massenspektrometrischen Befunde mit den Thermolyse-Ergebnissen [14] überein, woraus gefolgert werden darf, dass sowohl die Alkan-Abspaltung als auch die Alkyliden-Isomerisierung thermisch erlaubte Prozesse sind.

Experimenteller Teil

Die Massenspektren wurden am Gerät CH 5 (MAT) bei 70 eV bzw. 12 eV nom., 300 μ A Emission und einer Quellentemperatur von 50–120°C im Direkteinlassverfahren (T_E zwischen 50 und 140°C) aufgenommen. Hochauflösende Messungen (peak matching) und Nachweis metastabiler Zerfälle (B/E und B²/E linked scan, 1. FFR/DADI, 2. FFR) erfolgten am Gerät 311 A (MAT).

Die untersuchten Komplexe 1-6, 8, 9 wurden nach publizierten Arbeitsvorschriften synthetisiert und durch mehrfache Umkristallisation gereinigt [3-10]. Die Dideuteromethylen-Verbindung 2b wurde unter sinngemässer Anwendung der für das CH_2 -Derivat 2a angegebenen Verfahrensweise bereitet; das hierfür notwendige Diazomethan- d_2 wurde ausgehend von Diazald[®] (Aldrich) in Carbitol- d_1 (98% D)/D₂O (99.8% D)/NaOD (99% D) bereitet [25] und hatte einen Gesamtdeuterierungsgrad von ca. 98% (Charakterisierung: IR, ¹H-NMR).

Der μ -Methylen-Komplex 7 wurde in Anlehnung an die für $(\mu$ -CH₂)[(η^{5} -C₅H₅)Rh(CO)]₂ ausgearbeitete Vorschrift [26,27] synthetisiert; die hierfür nötige Vorstufe (η^{5} -C₅H₄CH₃)Rh(CO)₂ wurde aus Methylcyclopentadienylthallium und Bis[dicarbonyl(μ -chloro)rhodium] in Analogie zu (η^{5} -C₅H₅)Rh(CO)₂ hergestellt [27]. Rote, durchsichtige, luftstabile Kristalle; Fp. 68°C. Elementaranalyse: Gef. C, 41.58, H, 3.72, N, 0.00. C₁₅H₁₆O₂Rh₂ (434.09) ber.: C, 41.50, H, 3.71, N, 0.00%. IR (ν (CO); cm⁻¹): 1988 st(Sch), 1945 sst (KBr); 1969 sst (η -Pentan); 1959 sst (THF). ¹H-NMR (90 MHz; CDCl₃, 25°C): δ (CH₂) 6.81 (2H; dd, ²J(Rh,H) \approx 0.6 Hz); δ (CH₃) 2.07 (6H; s); δ (C₅H₄) 5.35 ppm (8H; m).

Dank

Der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie, der Degussa AG, der Hoechst Aktiengesellschaft, der Fa. Messer-Griesheim sowie den Chemischen Werken Hüls AG danken wir für die stets grosszügig gewährte Unterstützung unserer Arbeiten durch Sach- und Personalmittel. Herrn Dr. G.W. Kriechbaum danken wir für die Überlassung von Substanzproben.

Literatur

- 1 W.A. Herrmann, Ch. Bauer und A. Schäfer, J. Organomet. Chem., 256 (1983) 147.
- 2 Übersichtsartikel: (a) W.A. Herrmann, Advan. Organomet. Chem., 20 (1982) 159; (b) W.A. Herrmann, J. Organomet. Chem., 250 (1983) 319; (c) W.A. Herrmann, Pure Appl. Chem., 54 (1982) 65.
- 3 W.A. Herrmann, Ch. Bauer, J. Plank, W. Kalcher, D. Speth und M.L. Ziegler, Angew. Chem., 93 (1981) 212; Angew. Chem. internat. Edit. Engl., 20 (1981) 193.
- 4 Ch. Bauer und W.A. Herrmann, J. Organomet. Chem., 209 (1981) C13.

- 5 W.A. Herrmann und Ch. Bauer, Chem. Ber., 115 (1982) 14.
- 6 W.A. Herrmann, J.M. Huggins, B. Reiter und Ch. Bauer, J. Organomet. Chem., 214 (1981) C19.
- 7 W.A. Herrmann, J. Plank, Ch. Bauer, M.L. Ziegler, E. Guggolz und R. Alt, Z. Anorg. Allgem. Chem., 487 (1982) 85.
- 8 W.A. Herrmann, Ch. Bauer, G.W. Kriechbaum, H. Kunkely, M.L. Ziegler, D. Speth und E. Guggolz, Chem. Ber., 115 (1982) 878.
- 9 (a) W.A. Herrmann, J.M. Huggins, Ch. Bauer, M. Smischek, H. Pfisterer und M.L. Ziegler, J. Organomet. Chem., 226 (1982) C59; (b) W.A. Herrmann, Ch. Bauer, J.M. Huggins, H. Pfisterer und M.L. Ziegler, ibid., im Druck.
- 10 (a) W.A. Herrmann, Ch. Bauer und K.K. Mayer, J. Organomet. Chem., 236 (1982) C18; (b) W.A. Herrmann, C. Weber, M.L. Ziegler und C. Pahl, Chem. Ber., im Druck.
- 11 W.A. Herrmann, J. Weichmann, R. Serrano, K. Blechschmitt, H. Pfisterer und M.L. Ziegler, Angew. Chem., 95 (1983) 331; Angew. Chem. internat. Edit. Engl., 22 (1983) 314; Angew. Chem. Suppl., (1983) 363.
- 12 W. Kalcher, W.A. Herrmann, C. Pahl und M.L. Ziegler, Chem. Ber., im Druck.
- 13 K.K. Mayer und W.A. Herrmann, J. Organomet. Chem., 182 (1979) 361.
- 14 A. Schäfer, Diplomarbeit, Universität Frankfurt 1983.
- 15 T.R. Halbert, M.E. Leonowicz und D.J. Maydonovitch, J. Amer. Chem. Soc., 102 (1980) 5101.
- 16 Zusammenfassende Darstellungen zum Thema "Übergangsmetall-Carben-Komplexe" vgl. (a) E.O.
 Fischer (Nobelvortrag), Angew. Chem., 86 (1974) 651; Advan. Organomet. Chem., 14 (1976) 1; (b)
 F.J. Brown, Progr. Inorg. Chem., 27 (1980) 1.
- 17 Massenspektrometrisches Fragmentierungsverhalten von Organometallkomplexen mit terminalen Carben-Liganden: (a) J. Müller, Angew. Chem., 84 (1972) 725; Angew. Chem. internat. Edit. Engl., 11 (1972) 653 und die dort zitierte Literatur. Neuere Originalarbeiten sind in Fussnote 2 von Ref. 13 zusammengefasst.
- 18 F. Bottomley, I.J.B. Lin und P.S. White, J. Amer. Chem. Soc., 103 (1981) 703.
- (a) J.E. Bercaw, R.H. Marvich, L.G. Bell und H.H. Brintzinger, J. Amer. Chem. Soc., 94 (1972) 1219;
 (b) J.E. Bercaw, ibid., 96 (1974) 5087.
- 20 G.P. Pez und J.N. Armor, Advan. Organomet. Chem., 19 (1981) 1.
- 21 W.A. Herrmann, J. Plank, D. Riedel, M.L. Ziegler, K. Weidenhammer, E. Guggolz und B. Balbach, J. Amer. Chem. Soc., 103 (1981) 63.
- 22 R. Aumann, H. Wörmann und C. Krüger, Chem. Ber., 110 (1977) 1142.
- 23 R.B. Calvert, J.R. Shapley, A.J. Schultz, J.M. Williams, S.L. Suib und G.D. Stucky, J. Amer. Chem. Soc., 100 (1978) 6240.
- 24 Zusammenfassung: H. Werner, Advan. Organomet. Chem., 19 (1981) 155.
- 25 Vgl. die Synthese von Diazomethan, CH₂N₂, nach derselben Methode (Diazald[®]/Carbitol/H₂O/NaOH): J.R. Campbell, Chem. Ind. [London], (1972) 540; vgl. H. Dahn, A. Donzel, A. Merbach und H. Gold, Helv. Chim. Acta, 46 (1963) 994.
- 26 W.A. Herrmann, C. Krüger, R. Goddard und I. Bernal, J. Organomet. Chem., 140 (1977) 73.
- 27 W.P. Fehlhammer, W.A. Herrmann und K. Öfele, Metallorganische Komplexverbindungen, in G. Brauer (Hrsgb.), Handbuch der Präparativen Anorganischen Chemie, 3. Aufl., 3. Band, S. 1799ff., Ferdinand Enke-Verlag, Stuttgart 1981.
- 28 Auch andere Kohlenwasserstoff-Liganden wie z.B. Cyclooctadien können H-Atome auf verbrückende Methylengruppen übertragen, vgl. J. Müller, B. Passon und J. Pickard, J. Organomet. Chem., 228 (1982) C51.